: CC 1481151 : 8-49

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem									
Cyanide, Total		4500CNCE		MS	mg/L	0.05000	109 %	26-226	
eyumde, rotur		ISOUCIUCE	(CC 1481149-001)	MSD	mg/L mg/L	0.05000	140 %	26-226	
			(00110111) 001)	MSRPD	mg/L	0.05000	24.3%	≤36	
Carbon Dioxide		4500COC	(CC 1481149-001)	Dup	mg/L		9.7%	30	
pН		4500-H B	(CC 1481142-001)	Dup	units		0.3%	4.80	
1		4500HB	04/08/14:204970CJJ	CCV	units	8.000	100 %	95-105	
				CCV	units	8.000	99.8 %	95-105	
Ammonia Nitrog	gen	4500NH3B	04/15/14:204229CJJ	Blank	mg/L		ND	< 0.2	
				LCS	mg/L	6.000	77.4 %	68-103	
				MS	mg/L	6.000	61.9 %	74-105	435
			(CC 1481130-001)	MSD	mg/L	6.000	65.3 %	74-105	435
				MSRPD	mg/L	6.000	5.3%	≤7	
		4500NH3G	04/16/14:205422AMB	ICB	mg/L		-0.050	0.2	
				ICV	mg/L	2.000	109 %	90-110	
				CCB	mg/L		-0.027	0.2	
			CCV	mg/L	2.000	108 %	90-110		
			CCB	mg/L		0.025	0.2		
				CCV	mg/L	2.000	110 %	90-110	
Oxygen, dissolve	ed	4500-O G	(CC 1481149-001)	Dup	mg/L		0.0	0.5	
Phosphate-Phosp	ohorus	4500-P E		MS	mg/L	0.2500	77.8 %	4-170	
			(CC 1481150-001)	MSD	mg/L	0.2500	73.6 %	4-170	
				MSRPD	mg/L	0.2500	0.011	≤0.1	
		4500PE	04/08/14:204968CJJ	CCV	mg/L	0.5000	96.3 %	90-110	
				CCB	mg/L		-0.01	0.1	
				CCV	mg/L	0.5000	98.5 %	90-110	
				CCB	mg/L		-0.01	0.1	
Sulfide, Total		4500S D	04/14/14:204206CTL	LCS	mg/L	0.6667	100 %	75-125	
			(CC 1481149-001)	Dup	mg/L		0.0023	0.1	
		4500S2	04/14/14:205321CTL	CCV	mg/L	0.6667	104 %	90-110	
				CCB	mg/L		-0.032	0.1	
				CCV	mg/L	0.6667	103 %	90-110	
				CCB	mg/L		-0.035	0.1	
Oxygen, dissolve	ed	5210B	04/08/14:204963MCA	CCV	mg/L	1.000	102 %	80-120	
				CCV	mg/L	1.000	102 %	80-120	
Nitrogen, Total I	Kjeldahl	EPA351.2	04/16/14:205341AMB	CCB	mg/L		0.372	0.5	
				CCV	mg/L	1.000	103 %	90-110	
				CCB	mg/L		0.364	0.5	
				CCV	mg/L	1.000	104 %	90-110	
Definition									
ICV	: Initial Calibrati	on Verification	- Analyzed to verify the i	instrument c	calibration is	within criteri	a.		
ICB			yzed to verify the instrur						
CCV			ation - Analyzed to verify				riteria.		
CCB			Analyzed to verify the in						
Blank			ify that the preparation p						
LCS	•		ample - Prepared to verif	• •	• •		• •	•	
MS	1		ple is spiked with a know	n amount o	f analyte. The	e recoveries a	re an indicatio	on of how the	at sample
	matrix affects an			1 1 22	, . .	·		1, 1, 757	
MSD	1	1	MSD pair - A random sa	1 1	ate is spiked	with a knowi	amount of an	aryted. The	recoveries
			ple matrix affects analyt				Phase 1. d	1.00	
Dup			ample with each batch is	s prepared a	nu analyzed ii	n aupricate.	ne relative pe	accent differe	nce is an
·			eparation and analysis.	nalativ	ant diff		tion of	ion for the	
MSRPD		uve Percent Diff	erence (RPD) - The MS	relative per	cent differenc	te is an indica	ation of precis	ion for the pi	reparation
	and analysis.		the DOO lists of for the	aalirita					
ND	. mon-detect - Re	esun was below	the DQO listed for the ar	latyte.					

Lab ID Customer : CC 1481151 : 8-49

Definition DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
435	: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
440	: Sample nonhomogeneity may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
тос	5310C	04/21/14:204248AMM	Blank	mg/L		ND	< 0.3	
			BS	mg/L	15.00	104 %	75-114	
			BSD	mg/L	15.00	106 %	75-114	
			BSRPD	mg/L	15.00	2.1%	≤23.0	
	5310C	04/21/14:205697AMM	CCV	ppm	15.00	110 %	67-122	
Ci 1 1	(00	04/10/14 00/150000	CCV	ppm	15.00	106 %	67-122	
Chlordane	608	04/12/14:204150CCG	Blank	ug/L		ND	<2	
PCB 1016 - 1	608 608	04/12/14:204150CCG 04/12/14:204150CCG	Blank	ug/L		ND	<0.5	
PCB 1221 - 1 PCB 1232 - 1	608		Blank Blank	ug/L		ND ND	<0.5 <0.5	
PCB 1232 - 1 PCB 1242 - 1	608	04/12/14:204150CCG 04/12/14:204150CCG	Blank	ug/L ug/L		ND	<0.5	
PCB 1242 - 1 PCB 1248 - 1	608	04/12/14:204150CCG	Blank	U		ND ND	<0.5	
PCB 1248 - 1 PCB 1254 - 1	608	04/12/14:204150CCG	Blank	ug/L		ND ND	<0.5	
	608	04/12/14:204150CCG	Blank	ug/L		ND ND	<0.5	
PCB 1260 - 1	608	04/12/14:204150CCG	Blank	ug/L	0.5005	80.5 %	45-112	
Tetrachloro-m-xylene	008	04/12/14:204150000	LCS	ug/L ug/L	0.5005	80.3 % 87.4 %	45-112	
			BS	ug/L ug/L	0.5005	72.7 %	45-112	
			BSD	ug/L ug/L	0.5005	78.7 %	45-112	
			BSRPD	ug/L	0.5005	7.9%	≤29	
	608	04/25/14:205975VRG	CCV	ug/L	100.1	102 %	85-115	
			CCV	ug/L	50.05	89.4 %	85-115	
Toxaphene	608	04/12/14:204150CCG	Blank	ug/L		ND	< 0.5	
1,2,4-Trichlorobenzene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	34.7 %	15-62	
			BS	ug/L	10.00	11.5 %	0-112	
			BSD	ug/L	10.00	37.3 %	0-112	110
	605	04/10/14 00576 (3) D.C.	BSRPD	ug/L	20.00	2.6	≤1	410
120.11	625	04/18/14:205766VRG	CCV	mg/L	10.00	95.8 %	80-120	
1,2-Dichlorobenzene	625	04/14/14:204202CCG	Blank LCS	ug/L	10.00	ND 32.6 %	<1 13-67	
			BS	ug/L ug/L	10.00	9.8 %	0-111	
			BSD	ug/L ug/L	10.00	33.7 %	0-111	
			BSRPD	ug/L	20.00	2.4	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	89.0 %	80-120	
1,2-Diphenylhydrazine	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
1 5 5			LCS	ug/L	10.00	44.4 %	20-88	
			BS	ug/L	10.00	25.2 %	3-122	
			BSD	ug/L	10.00	44.5 %	3-122	
			BSRPD	ug/L	20.00	1.9	≤1	410
1,3-Dichlorobenzene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
			LCS BS	ug/L	10.00	30.0 % 8.8 %	12-64 0-105	
			BSD	ug/L ug/L	10.00 10.00	8.8 % 31.2 %	0-105	
			BSRPD	ug/L ug/L	20.00	2.2	 ≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	85.5 %	80-120	.10
1,4-Dichlorobenzene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
	025	0 11 11 120 202000	LCS	ug/L ug/L	10.00	31.7 %	13-65	
			BS	ug/L	10.00	9.0 %	0-109	
			BSD	ug/L	10.00	33.3 %	0-109	
			BSRPD	ug/L	20.00	2.4	≤ 1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	90.4 %	80-120	
2,4,5-Trichlorophenol	625	04/14/14:204202CCG	Blank	ug/L		ND	<2	
			LCS	ug/L	20.00	42.6 %	20-71	
			BS	ug/L	20.00	24.1 %	0-137	
			BSD	ug/L	20.00	45.2 %	0-137	

May 2, 2014
Cambria Community Services Dist.

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
2,4,5-Trichlorophenol	625	04/14/14:204202CCG	BSRPD	ug/L	20.00	4.2	≤2	410
_	625	04/18/14:205766VRG		mg/L	10.00	132 %	70-130	360
2,4,6-Tribromophenol	625	04/14/14:204202CCG		ug/L	20.00	47.4 %	15-124	
			LCS	ug/L	20.00	59.4 %	15-124	
			BS	ug/L	20.00	35.3 %	0-132	
			BSD	ug/L	20.00	59.5 %	0-132	410
	625	04/18/14:205766VRG	BSRPD CCV	ug/L	20.00 20.00	51.1% 132 %	≤38 80-120	410 362
2,4,6-Trichlorophenol	625	04/18/14:203766VRG	Blank	mg/L ug/L	20.00	132 % ND	<1	502
2,4,0-1110101010101	025	04/14/14.204202000	LCS	ug/L ug/L	20.00	42.3 %	17-70	
			BS	ug/L ug/L	20.00	22.6 %	0-171	
			BSD	ug/L	20.00	44.4 %	0-171	
			BSRPD	ug/L	20.00	65.0%	≤77	
	625	04/18/14:205766VRG	CCV	mg/L	10.00	118 %	80-120	
2,4-Dichlorophenol	625	04/14/14:204202CCG		ug/L		ND	<2	
			LCS	ug/L	20.00	43.6 %	20-64	
			BS	ug/L	20.00	21.6 %	0-132	
			BSD	ug/L	20.00	46.3 %	0-132	44.0
	(25	04/10/14 005556000	BSRPD	ug/L	20.00	5.0	≤2	410
	625	04/18/14:205766VRG		mg/L	10.00	122 %	80-120	360
2,4-Dimethylphenol	625	04/14/14:204202CCG	Blank	ug/L	20.00	ND	<2	
			LCS BS	ug/L ug/L	20.00 20.00	39.7 % 18.3 %	24-79 0-110	
			BSD	ug/L ug/L	20.00	41.3 %	0-110	
			BSRPD	ug/L ug/L	20.00	4.6		410
	625	04/18/14:205766VRG		mg/L	10.00	140 %	80-120	360
2,4-Dinitrophenol	625	04/14/14:204202CCG		ug/L	10.00	ND	<5	200
-,	020	0 10 1 10 1 10 1 20 20 20 20	LCS	ug/L	20.00	34.4 %	3-39	
			BS	ug/L	20.00	20.3 %	0-100	
			BSD	ug/L	20.00	34.3 %	0-100	
			BSRPD	ug/L	20.00	2.8	≤5	
	625	04/18/14:205766VRG		mg/L	10.00	107 %	80-120	
2,4-Dinitrotoluene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	44.4 %	15-87	
			BS	ug/L	10.00	27.5 %	0-139	
			BSD BSRPD	ug/L	10.00 20.00	48.4 % 2.1	0-139	410
	625	04/18/14·205766VPC		ug/L mg/I	10.00	101 %	≤1 80-120	410
2,6-Dinitrotoluene	625	04/18/14:205766VRG 04/14/14:204202CCG		mg/L	10.00	101 % ND	<1	
	025	0+/1+/1+.204202CCO	LCS	ug/L ug/L	10.00	42.7 %	21-78	
			BS	ug/L ug/L	10.00	24.0 %	0-131	
			BSD	ug/L	10.00	46.5 %	0-131	
			BSRPD	ug/L	20.00	2.2	≤1	410
	625	04/18/14:205766VRG		mg/L	10.00	98.8 %	80-120	
2-Chlorophenol	625	04/14/14:204202CCG	Blank	ug/L		ND	<2	
			LCS	ug/L	20.00	37.8 %	19-74	
			BS	ug/L	20.00	17.0 %	0-127	
			BSD	ug/L	20.00	40.5 %	0-127	410
		04/10/14 00/76/07/0	BSRPD	ug/L	20.00	4.7	<u>≤2</u>	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	107 %	80-120	
2-Fluorobiphenyl	625	04/14/14:204202CCG		ug/L	10.00	32.3 %	16-104	
			LCS	ug/L	10.00	38.6 %	16-104	
			BS BSD	ug/L ug/L	10.00 10.00	16.8 % 40.0 %	0-109 0-109	
			ענע	ug/L	10.00	40.0 %	0-109	

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
2-Fluorobiphenyl	625	04/14/14:204202CCG	BSRPD	ug/L	20.00	2.3	≤ 1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	98.9 %	80-120	
2-Fluorophenol	625	04/14/14:204202CCG		ug/L	20.00	29.0 %	20-98	
			LCS	ug/L	20.00	34.0 %	20-98	
			BS	ug/L	20.00	14.0 %	0-126	
			BSD	ug/L	20.00	36.1 %	0-126	410
	(25	04/10/14 00556 (170 0	BSRPD	ug/L	20.00	88.2%	≤79	410
	625	04/18/14:205766VRG	CCV	mg/L	20.00	91.8 %	80-120	
2-Nitrophenol	625	04/14/14:204202CCG	Blank	ug/L	20.00	ND	<2 20-72	
			LCS BS	ug/L ug/L	20.00	46.4 % 21.4 %	0-142	
			BSD	ug/L ug/L	20.00	47.7 %	0-142	
			BSRPD	ug/L	20.00	5.3	≤2	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	130 %	80-120	360
3,3-Dichlorobenzidine	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<2	500
5,5 Diemorobenziame	025	04/14/14.204202000	LCS	ug/L	20.00	24.2 %	10-45	
			BS	ug/L	20.00	19.1 %	0-56	
			BSD	ug/L	20.00	25.9 %	0-56	
			BSRPD	ug/L	20.00	1.4	≤2	
	625	04/18/14:205766VRG	CCV	mg/L	20.00	85.8 %	80-120	
4,6-Dinitro-2-methylphenol	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	20.00	52.4 %	4-58	
			BS	ug/L	20.00	35.0 %	0-169	
			BSD	ug/L	20.00	51.8 %	0-169	
			BSRPD	ug/L	20.00	38.7%	≤270	
4,6-Dinitro-o-cresol	625	04/18/14:205766VRG	CCV	mg/L	10.00	127 %	80-120	360
4-Bromophenylphenylether	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	44.0 %	19-68	
			BS	ug/L	10.00	25.2 %	0-123	
			BSD BSRPD	ug/L	10.00 20.00	45.1 % 2.0	0-123	410
	625	04/18/14:205766VRG	CCV	ug/L mg/L	10.00	105 %	≤1 80-120	410
4 Nitrophonol	625	04/14/14:204202CCG	Blank		10.00	ND	<2	
4-Nitrophenol	023	04/14/14:204202000	LCS	ug/L ug/L	20.00	55.7 %	<2 4-75	
			BS	ug/L ug/L	20.00	35.0 %	0-206	
			BSD	ug/L	20.00	62.2 %	0-206	
			BSRPD	ug/L	20.00	5.4	≤2	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	153 %	80-120	360
Acenaphthene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
····F	020		LCS	ug/L	10.00	38.8 %	19-76	
			BS	ug/L	10.00	18.2 %	0-125	
	1		BSD	ug/L	10.00	41.9 %	0-125	
			BSRPD	ug/L	20.00	2.4	≤1	410
	625	04/18/14:205766VRG		mg/L	10.00	92.7 %	80-120	
Acenaphthylene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
	1		LCS	ug/L	10.00	38.4 %	11-76	
	1		BS	ug/L	10.00	17.7 %	0-103	
	1		BSD	ug/L	10.00	41.1 %	0-103	410
		0.14041.007	BSRPD	ug/L	20.00	2.3	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	100 %	80-120	
Anthracene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
	1		LCS	ug/L	10.00	42.4 %	20-77	
	1		BS	ug/L	10.00	25.3 %	0-131	
	1		BSD	ug/L	10.00	43.9 %	0-131	

May 2, 2014
Cambria Community Services Dist.

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Anthracene	625	04/14/14:204202CCG	BSRPD	ug/L	20.00	1.9	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	97.1 %	80-120	
Azobenzene	625	04/18/14:205766VRG	CCV	mg/L	10.00	90.9 %	80-120	
Benzidine	625	04/14/14:204202CCG		ug/L		ND	<10	
			LCS	ug/L	20.00	17.5 %	0-97	
			BS	ug/L	20.00	17.5 %	0-97	
			BSD	ug/L	20.00	17.5 %	0-97	
			BSRPD	ug/L	20.00	0.0018	≤10	
	625	04/18/14:205766VRG	CCV	mg/L	20.00	97.2 %	70-130	
Benzo(a)anthracene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	45.5 %	19-75	
			BS	ug/L	10.00	35.1 %	4-131	
			BSD	ug/L	10.00	52.0 %	4-131	410
	<05	04/10/14 0055560 000	BSRPD	ug/L	20.00	1.7	<u>≤1</u>	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	96.4 %	80-120	
Benzo(a)pyrene	625	04/14/14:204202CCG		ug/L	10.00	ND	<1	
			LCS BS	ug/L	10.00 10.00	35.8 % 27.4 %	8-65 2-122	
			BSD	ug/L ug/L	10.00	27.4 % 38.5 %	2-122	
			BSRPD	ug/L ug/L	20.00	1.1	≤1 ≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	94.2 %	80-120	410
Benzo(b)fluoranthene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
Denzo(0)Indorantinene	025	04/14/14.204202000	LCS	ug/L	10.00	54.0 %	12-70	
			BS	ug/L	10.00	37.9 %	7-121	
			BSD	ug/L	10.00	54.5 %	7-121	
			BSRPD	ug/L	20.00	1.7	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	112 %	80-120	
Benzo(g,h,i)perylene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	43.9 %	9-67	
			BS	ug/L	10.00	32.6 %	0-141	
			BSD	ug/L	10.00	45.0 %	0-141	
			BSRPD	ug/L	20.00	1.2	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	91.7 %	80-120	
Benzo(k)fluoranthene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	27.4 %	16-62	
			BS	ug/L	10.00	24.1 %	0-161	
			BSD BSRPD	ug/L	10.00	32.3 %	0-161	
	(25	04/19/14 2057(())DC		ug/L	20.00	0.82	<u>≤1</u>	
Lie (2 Chlementher) d	625	04/18/14:205766VRG	CCV	mg/L	10.00	80.7 %	80-120	
bis(2-Chloroethoxy)methane	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
			LCS BS	ug/L ug/I	10.00 10.00	36.5 % 16.4 %	8-89 0-120	
			BSD	ug/L ug/L	10.00	38.7 %	0-120	
			BSRPD	ug/L ug/L	20.00	2.2	0-120 ≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	93.4 %	80-120	.10
bis(2-Chloroethyl)ether	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
ensite entoroeuryi)etter	025	0 1/1 1/1 1.204202000	LCS	ug/L	10.00	45.2 %	22-109	
			BS	ug/L	10.00	16.2 %	0-165	
			BSD	ug/L	10.00	49.2 %	0-165	
			BSRPD	ug/L	20.00	3.3	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	89.7 %	80-120	
bis(2-Chloroisopropyl)ether	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	28.1 %	27-105	
	1		BS	ug/L	10.00	11.3 %	0-117	

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
bis(2-Chloroisopropyl)ether	625	04/14/14:204202CCG	BSD	ug/L	10.00	30.6 %	0-117	
(FF, -)			BSRPD	ug/L	20.00	1.9	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	80.4 %	80-120	
bis(2-Ethylhexyl)phthalate	625	04/14/14:204202CCG	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	45.7 %	12-78	
			BS	ug/L	10.00	35.4 %	0-133	
			BSD	ug/L	10.00	56.8 %	0-133	410
		04/10/14 00555(2) 70 0	BSRPD	ug/L	20.00	2.1	<u>≤2</u>	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	111 %	80-120	
Butylbenzylphthalate	625	04/14/14:204202CCG	Blank LCS	ug/L	10.00	ND 26.3 %	<2 1-53	
			BS	ug/L ug/L	10.00	20.3 %	0-97	
			BSD	ug/L ug/L	10.00	31.3 %	0-97	
			BSRPD	ug/L	20.00	0.76	≤2	
	625	04/18/14:205766VRG	CCV	mg/L	10.00	108 %	80-120	
Chloronaphthalene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
*			LCS	ug/L	10.00	38.7 %	18-78	
			BS	ug/L	10.00	16.4 %	0-204	
			BSD	ug/L	10.00	41.3 %	0-204	
			BSRPD	ug/L	20.00	2.5	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	93.2 %	80-120	
Chlorophenylphenylether	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	40.2 %	20-74	
			BS	ug/L	10.00	21.9 %	0-128	
			BSD BSRPD	ug/L ug/L	10.00 20.00	43.3 % 2.1	0-128 ≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	100 %	80-120	410
Chrysene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
emysene	025	04/14/14:204202000	LCS	ug/L	10.00	34.2 %	20-71	
			BS	ug/L	10.00	24.2 %	0-141	
			BSD	ug/L	10.00	34.7 %	0-141	
			BSRPD	ug/L	20.00	1.1	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	82.0 %	80-120	
Dibenzo(a,h)anthracene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	45.0 %	13-66	
			BS	ug/L	10.00	33.3 %	0-141	
			BSD	ug/L	10.00	45.3 %	0-141	410
	(25	04/19/14/2057COVDC	BSRPD	ug/L	20.00	1.2	<u>≤1</u>	410
Diathylahthalata	625	04/18/14:205766VRG	CCV Blank	mg/L	10.00	94.7 %	80-120	
Diethylphthalate	625	04/14/14:204202CCG	Blank LCS	ug/L	10.00	ND 28.4 %	<1 11-63	
			BS	ug/L ug/L	10.00 10.00	28.4 % 22.6 %	0-115	
			BSD	ug/L ug/L	10.00	33.6 %	0-115	
			BSRPD	ug/L ug/L	20.00	1.1	≤1 5	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	111 %	80-120	
Dimethylphthalate	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	22.6 %	4-37	
			BS	ug/L	10.00	17.2 %	0-102	
			BSD	ug/L	10.00	27.7 %	0-102	
			BSRPD	ug/L	20.00	1.1	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	106 %	80-120	
Di-n-butylphthalate	625	04/14/14:204202CCG	Blank	ug/L		ND	<2	
			LCS	ug/L	10.00	38.9 %	9-54	
			BS	ug/L	10.00	30.7 %	0-102	

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Di-n-butylphthalate	625	04/14/14:204202CCG	BSD	ug/L	10.00	41.7 %	0-102	
			BSRPD	ug/L	20.00	1.1	≤2	
	625	04/18/14:205766VRG	CCV	mg/L	10.00	125 %	80-120	360
Di-n-octylphthalate	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	52.0 %	0-50	310
			BS	ug/L	10.00	41.5 %	12-122	
			BSD	ug/L	10.00	59.8 %	12-122	
			BSRPD	ug/L	20.00	36.1%	≤90	
	625	04/18/14:205766VRG	CCV	mg/L	10.00	131 %	80-120	360
Fluoranthene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
			LCS	ug/L	10.00	46.6 %	20-72	
			BS BSD	ug/L	10.00 10.00	31.1 %	0-140 0-140	
			BSRPD	ug/L ug/L	20.00	47.7 % 1.7	0-140 ≤1	410
	625	04/19/14/205766VDC						410
Fluorona	625 625	04/18/14:205766VRG 04/14/14:204202CCG	CCV Blank	mg/L	10.00	98.4 % ND	80-120 <1	
Fluorene	025	04/14/14:204202CCG	LCS	ug/L ug/L	10.00	ND 42.1 %	<1 24-89	
			BS	ug/L ug/L	10.00	42.1 % 22.3 %	0-136	
			BSD	ug/L ug/L	10.00	45.1 %	0-136	
			BSRPD	ug/L	20.00	2.3	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	94.7 %	80-120	
Hexachlorobenzene	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<1	
riexaemorocomzene	025	0 1/1 1/1 1/20 1202000	LCS	ug/L	10.00	45.2 %	19-65	
			BS	ug/L	10.00	24.8 %	0-126	
			BSD	ug/L	10.00	47.1 %	0-126	
			BSRPD	ug/L	20.00	2.2	≤ 1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	103 %	80-120	
Hexachlorobutadiene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	35.6 %	12-60	
			BS	ug/L	10.00	10.9 %	0-110	
			BSD	ug/L	10.00	37.0 %	0-110	
			BSRPD	ug/L	20.00	2.6	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	105 %	80-120	
Hexachlorocyclopentadiene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	17.0 %	8-28	
			BS	ug/L	10.00	3.0 %	0-284	
			BSD BSRPD	ug/L	10.00 20.00	15.8 % 1.3	0-284	410
	625	04/18/14/205766VPC		ug/L mg/I		94.5 %	≤1 80.120	410
Hexachloroethane	625	04/18/14:205766VRG 04/14/14:204202CCG	CCV Blank	mg/L	10.00	94.5 % ND	80-120 <1	
riexaciiioroethane	025	04/14/14:204202CCG	LCS	ug/L ug/L	10.00	ND 31.2 %	<1 13-74	
			BS	ug/L ug/L	10.00	8.6 %	0-108	
			BSD	ug/L ug/L	10.00	32.2 %	0-108	
			BSRPD	ug/L	20.00	2.4	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	95.1 %	80-120	
Indeno(1,2,3-c,d)pyrene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
	020		LCS	ug/L	10.00	45.0 %	10-66	
			BS	ug/L	10.00	32.8 %	0-141	
			BSD	ug/L	10.00	45.4 %	0-141	
			BSRPD	ug/L	20.00	1.3	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	95.1 %	80-120	
Isophorone	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
-			LCS	ug/L	10.00	35.7 %	20-76	
			BS	ug/L	10.00	17.7 %	0-116	

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Isophorone	625	04/14/14:204202CCG	BSD	ug/L	10.00	39.0 %	0-116	
T. T			BSRPD	ug/L	20.00	2.1	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	86.8 %	80-120	
Naphthalene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
-			LCS	ug/L	10.00	41.6 %	17-76	
			BS	ug/L	10.00	15.1 %	0-121	
			BSD	ug/L	10.00	44.6 %	0-121	
			BSRPD	ug/L	20.00	2.9	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	99.4 %	80-120	
Nitrobenzene	625	04/14/14:204202CCG		ug/L		ND	<1	
			LCS	ug/L	10.00	67.3 %	32-127	
			BS	ug/L	10.00	28.8 %	0-176	
			BSD BSRPD	ug/L	10.00	71.2 %	0-176	410
	(25	04/19/14/2057COVDC		ug/L	20.00	84.7%	<u>≤50</u>	410 360
Nitrohanzana d5	625 625	04/18/14:205766VRG 04/14/14:204202CCG	CCV	mg/L	10.00	136 %	80-120 21-99	300
Nitrobenzene-d5	625	04/14/14:204202CCG	Blank LCS	ug/L ug/L	10.00	33.3 % 41.2 %	21-99 21-99	
			BS	ug/L ug/L	10.00	41.2 % 15.6 %	0-115	
			BSD	ug/L ug/L	10.00	42.1 %	0-115	
			BSRPD	ug/L	20.00	2.6	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	102 %	80-120	110
N-Nitrosodimethylamine	625	04/14/14:204202CCG	Blank	ug/L	10.00	ND	<2	
i v i viu osou metry i annie	025	04/14/14.204202000	LCS	ug/L	10.00	28.0 %	22-85	
			BS	ug/L	10.00	9.7 %	0-114	
			BSD	ug/L	10.00	31.1 %	0-114	
			BSRPD	ug/L	20.00	2.1	≤2	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	81.5 %	80-120	
N-Nitrosodi-N-propylamine	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	38.3 %	28-98	
			BS	ug/L	10.00	17.5 %	0-140	
			BSD	ug/L	10.00	41.5 %	0-140	
			BSRPD	ug/L	20.00	2.4	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	92.8 %	80-120	
N-Nitrosodiphenylamine	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	46.7 %	24-100	
			BS	ug/L	10.00	27.5 %	4-132	
			BSD	ug/L	10.00	47.8 %	4-132	410
	(25	04/19/14/2057COUDC	BSRPD	ug/L	20.00	2.0	<u>≤1</u>	410
n Chlono m onosci	625	04/18/14:205766VRG	CCV	mg/L	10.00	103 %	80-120	
p-Chloro-m-cresol	625	04/14/14:204202CCG	Blank LCS	ug/L	20.00	ND 47.3 %	<2 19-87	
			BS	ug/L ug/L	20.00 20.00	47.3 % 25.8 %	0-144	
			BSD	ug/L ug/L	20.00	23.8 % 51.0 %	0-144	
			BSRPD	ug/L ug/L	20.00	5.0	≤2	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	136 %	80-120	360
Pentachlorophenol	625	04/14/14:204202CCG		ug/L	10.00	ND	<2	2.50
	025		LCS	ug/L	20.00	36.1 %	0-66	
			BS	ug/L	20.00	22.0 %	0-128	
			BSD	ug/L	20.00	37.9 %	0-128	
			BSRPD	ug/L	20.00	3.2	≤2	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	92.6 %	80-120	
Phenanthrene	625	04/14/14:204202CCG	Blank	ug/L		ND	<1	
			LCS	ug/L	10.00	46.6 %	20-70	
			BS	ug/L	10.00	27.4 %	0-131	

Method

Constituent

Units

: CC 1481151 : 8-49

Note

Conc. QC Data DQO

constituent		2 400, 12	- 5 PC	01110	001101	Q C Dana	240	11000
Organic								
Phenanthrene	625	04/14/14:204202CCG	BSD	ug/L	10.00	49.3 %	0-131	
			BSRPD	ug/L	20.00	2.2	≤1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	99.8 %	80-120	
Phenol	625	04/14/14:204202CCG		ug/L		ND	<1	
			LCS	ug/L	20.00	31.3 %	20-80	
			BS	ug/L	20.00	14.1 %	0-120	
			BSD	ug/L	20.00	34.6 %	0-120	
			BSRPD	ug/L	20.00	4.1	≤ 1	410
	625	04/18/14:205766VRG	CCV	mg/L	10.00	102 %	80-120	
Phenol-d6	625	04/14/14:204202CCG		ug/L	20.00	25.9 %	18-103	
			LCS	ug/L	20.00	34.5 %	18-103	
			BS	ug/L	20.00	14.7 %	0-125	
			BSD	ug/L	20.00	37.1 %	0-125	
			BSRPD	ug/L	20.00	86.5%	≤99	
	625	04/18/14:205766VRG		mg/L	20.00	90.3 %	80-120	
p-Terphenyl-d14	625	04/14/14:204202CCG		ug/L	10.00	41.0 %	13-142	
r -r	0-0		LCS	ug/L	10.00	40.2 %	13-142	
			BS	ug/L	10.00	29.6 %	2-135	
			BSD	ug/L	10.00	44.1 %	2-135	
			BSRPD	ug/L	20.00	1.4	≤1	410
	625	04/18/14:205766VRG		mg/L	10.00	97.9 %	80-120	
Pyrene	625	04/14/14:204202CCG		ug/L		ND	<1	
i yrene	025	0 1/1 1/1 1.20 1202000	LCS	ug/L	10.00	42.6 %	15-78	
			BS	ug/L	10.00	30.5 %	1-133	
			BSD	ug/L	10.00	47.3 %	1-133	
			BSRPD	ug/L	20.00	1.7	≤1	410
	625	04/18/14:205766VRG		mg/L	10.00	98.0 %	80-120	
Pyridine	625	04/14/14:204202CCG	Blank	ug/L		ND	<10	
5			LCS	ug/L	10.00	2.4 %	0-34	
			BS	ug/L	10.00	0.0 %	0-92	
			BSD	ug/L	10.00	6.1 %	0-92	
			BSRPD	ug/L	20.00	0.61	≤10	
	625	04/18/14:205766VRG		mg/L	10.00	87.1 %	80-120	
2,4`-DDD	625P	04/14/14:205423SG	CCV	ug/L	100.0	80.9 %	70-130	
2,4`-DDE	625P	04/14/14:205423SG	CCV	ug/L	100.0	95.8 %	70-130	
2,4`-DDT	625P	04/14/14:205423SG	CCV	ug/L ug/L	100.0	119 %	70-130	
Aldrin	625P	04/11/14:204133CCG		ng/L	100.0	ND	<5	
	02.5P	04/11/14.204133CCO	LCS	ng/L ng/L	100.0	85.6 %	0-123	
			BS	ng/L ng/L	100.0	83.0 % 78.2 %	0-125 0-127	
			BSD	ng/L ng/L	100.0	61.4 %	0-127 0-127	
			BSRPD	ng/L ng/L	100.0	24.0%	≤206	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	129 %	70-130	
Alpha BHC	625P	04/11/14:2034233G	Blank	<u> </u>	100.0	129 % ND	<5	
мірна впс	023P	04/11/14:204155000		ng/L ng/I	100.0	58.5 %	<5 28-112	
			LCS BS	ng/L ng/L	100.0 100.0	58.5 % 82.3 %	28-112 22-131	
			BSD		100.0	69.1 %	22-131	
			BSRPD	ng/L ng/L	100.0	17.6%	22-131 ≤55	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	90.4 %	<u>≤</u> 33 70-130	
alaha Chlordar -				U	100.0			
alpha-Chlordane	625P	04/11/14:204133CCG		ng/L	100.0	ND 04.1.%	<5	
			LCS	ng/L	100.0	94.1 %	16-109	
			BS BSD	ng/L	100.0 100.0	99.2 %	0-135	
				ng/L		74.3 %	0-135	
		04/14/14 005/0005	BSRPD	ng/L	100.0	28.7%	<u>≤77</u>	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	107 %	70-130	

Quality Control - Organic

Date/ID

Туре

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic					1			
Beta BHC	625P	04/11/14:204133CCG	Blank	ng/L		ND	<5	
			LCS	ng/L	100.0	46.4 %	22-127	
			BS	ng/L	100.0	69.1 %	0-202	
			BSD	ng/L	100.0	58.4 %	0-202	
			BSRPD	ng/L	100.0	16.7%	≤44	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	73.4 %	70-130	
cis_Nonachlor	625P	04/11/14:204133CCG		ng/L		ND	<5	
			LCS	ng/L	100.0	75.3 %	0-137	
			BS	ng/L	100.0	83.1 %	0-134	
			BSD	ng/L	100.0	53.6 %	0-134	
			BSRPD	ng/L	100.0	43.1%	≤85	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	95.8 %	70-130	
Delta BHC	625P	04/11/14:204133CCG		ng/L	10010	ND	<5	
Dena Dire	0251	04/11/14.2041550000	LCS	ng/L ng/L	100.0	20.7 %	1-140	
			BS	ng/L	100.0	33.0 %	16-151	
			BSD	ng/L ng/L	100.0	27.2 %	16-151	
			BSRPD	ng/L	100.0	19.2%	≤62	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	99.6 %	70-130	
Dieldrin	625P	04/11/14:2034233G			100.0	99.0 % ND	<5	
Dielann	023P	04/11/14:204155000	LCS	ng/L	100.0	79.2 %	2-113	
			BS	ng/L	100.0	79.2 % 89.4 %	0-179	
			BSD	ng/L	100.0	65.5 %	0-179	
			BSRPD	ng/L ng/L	100.0	30.8%		
	(25D	04/14/14:00540280						
	625P	04/14/14:205423SG	CCV	ug/L	100.0	107 %	70-130	
Endosulfan I	625P	04/11/14:204133CCG		ng/L	100.0	ND	<5	
			LCS	ng/L	100.0	82.8 %	3-123	
			BS	ng/L	100.0	92.4 %	0-174	
			BSD	ng/L	100.0	75.4 %	0-174	
	(0.5)	0.4/4.4/4.4.005.40000	BSRPD	ng/L	100.0	20.3%	≤238	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	124 %	70-130	
Endosulfan II	625P	04/11/14:204133CCG		ng/L		ND	<5	
			LCS	ng/L	100.0	111 %	0-129	
			BS	ng/L	100.0	86.9 %	0-186	
			BSD	ng/L	100.0	87.5 %	0-186	
			BSRPD	ng/L	100.0	0.7%	≤116	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	114 %	70-130	
Endosulfan Sulfate	625P	04/11/14:204133CCG		ng/L		ND	<5	
			LCS	ng/L	100.0	62.1 %	2-104	
			BS	ng/L	100.0	78.6 %	0-119	
			BSD	ng/L	100.0	53.3 %	0-119	
			BSRPD	ng/L	100.0	38.4%	≤98	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	101 %	70-130	
Endrin	625P	04/11/14:204133CCG		ng/L		ND	<5	
			LCS	ng/L	100.0	40.8 %	0-97	
			BS	ng/L	100.0	99.6 %	0-140	
			BSD	ng/L	100.0	35.5 %	0-140	
			BSRPD	ng/L	100.0	94.9%	≤140	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	123 %	70-130	
Endrin Aldehyde	625P	04/11/14:204133CCG	Blank	ng/L		ND	<5	
			LCS	ng/L	100.0	67.5 %	10-144	
			BS	ng/L	100.0	87.1 %	0-113	
1		1	BSD	ng/L	100.0	88.6 %	0-113	
			DSD					
			BSRPD	ng/L	100.0	1.7%	≤120	

: CC 1481151 : 8-49

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Endrin Ketone	625P	04/11/14:204133CCG	Blank	ng/L		ND	<5	
			LCS	ng/L	100.0	89.5 %	19-154	
			BS	ng/L	100.0	66.8 %	0-142	
			BSD	ng/L	100.0	94.1 %	0-142	
			BSRPD	ng/L	100.0	34.0%	≤133	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	95.1 %	70-130	
gamma-Chlordane	625P	04/11/14:204133CCG		ng/L		ND	<5	
			LCS	ng/L	100.0	101 %	0-121	
			BS	ng/L	100.0	100 %	0-125	
			BSD BSRPD	ng/L	100.0 100.0	78.6 %	0-125	
	625P	04/14/14:205423SG	CCV	ng/L	100.0	24.4% 107 %	≤110 70-130	
Heptachlor	625P	04/11/14:2034233G		ug/L	100.0	107 % ND	<5	
Heptachior	025P	04/11/14:204155000	LCS	ng/L ng/L	100.0	108 %	<5 0-119	
			BS	ng/L ng/L	100.0	80.3 %	0-119	
			BSD	ng/L	100.0	71.4 %	0-119	
			BSRPD	ng/L	100.0	11.7%	≤72	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	112 %	70-130	
Heptachlor Epoxide	625P	04/11/14:204133CCG		ng/L		ND	<5	
	0201	0 10 110 1120 1100 000	LCS	ng/L	100.0	97.5 %	18-105	
			BS	ng/L	100.0	94.9 %	0-117	
			BSD	ng/L	100.0	84.4 %	0-117	
			BSRPD	ng/L	100.0	11.7%	≤72	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	87.1 %	70-130	
Lindane	625P	04/11/14:204133CCG	Blank	ng/L		ND	<5	
			LCS	ng/L	100.0	124 %	40-132	
			BS	ng/L	100.0	148 %	16-127	436
			BSD	ng/L	100.0	135 %	16-127	436
			BSRPD	ng/L	100.0	8.7%	≤116	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	87.0 %	70-130	
Methoxychlor	625P	04/11/14:204133CCG		ng/L	100.0	ND	<5	
			LCS BS	ng/L	100.0	57.6 %	0-113	
			BSD	ng/L	100.0 100.0	66.5 % 69.5 %	0-138 0-138	
			BSRPD	ng/L ng/L	100.0	4.4%	0-138 ≤55	
	625P	04/14/14:205423SG	CCV	ug/L	100.0	88.2 %	70-130	
o,p - DDD	625P	04/11/14:204133CCG		ng/L	100.0	ND	<5	
o,p DDD	0251	04/11/14.204133CCU	LCS	ng/L ng/L	100.0	81.8 %	11-117	
			BS	ng/L	100.0	95.9 %	2-119	
			BSD	ng/L	100.0	72.0 %	2-119	
			BSRPD	ng/L	100.0	28.5%	≤45	
o,p - DDE	625P	04/11/14:204133CCG		ng/L		ND	<5	
^ 			LCS	ng/L	100.0	87.6 %	12-119	
			BS	ng/L	100.0	97.6 %	0-115	
			BSD	ng/L	100.0	71.7 %	0-115	
			BSRPD	ng/L	100.0	30.5%	≤39	
o,p - DDT	625P	04/11/14:204133CCG	Blank	ng/L		ND	<5	
			LCS	ng/L	100.0	81.7 %	1-117	
			BS	ng/L	100.0	90.1 %	0-121	
			BSD BSRPD	ng/L ng/I	100.0 100.0	80.8 %	0-121 ≤66	
nn DDD	605D	04/14/14:20542250		ng/L		10.9%		
p,p - DDD	625P	04/14/14:205423SG	CCV	ug/L	100.0	73.6 %	70-130	
p,p - DDE	625P	04/14/14:205423SG 04/14/14:205423SG	CCV	ug/L	100.0	91.1 % 93.4 %	70-130	
p,p - DDT	625P	04/14/14:205423SG	CCV	ug/L	100.0	93.4 %	70-130	

: CC 1481151 : 8-49

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note			
Organic												
p,p`-DDD		625P	04/11/14:204133CCG	Blank	ng/L		ND	<5				
1 /1				LCS	ng/L	100.0	76.1 %	9-130				
				BS	ng/L	100.0	89.1 %	4-131				
				BSD	ng/L	100.0	34.7 %	4-131				
				BSRPD	ng/L	100.0	87.8%	≤84	410			
p,p`-DDE		625P	04/11/14:204133CCG	Blank	ng/L		ND	<5	-			
r 'r				LCS	ng/L	100.0	88.0 %	6-127				
				BS	ng/L	100.0	106 %	0-125				
				BSD	ng/L	100.0	83.1 %	0-125				
				BSRPD	ng/L	100.0	23.9%	≤80				
p,p`-DDT		625P	04/11/14:204133CCG	Blank	ng/L		ND	<5				
r'r				LCS	ng/L	100.0	61.1 %	0-124				
				BS	ng/L	100.0	67.6 %	0-121				
				BSD	ng/L	100.0	76.7 %	0-121				
				BSRPD	ng/L	100.0	12.6%	≤24				
Tetrachloro-m-xyler	ne	625P	04/11/14:204133CCG	Blank	ng/L	100.0	17.0 %	9-53				
retractions in xyle.	lie	0201	01/11/11/2011/05/000	LCS	ng/L	100.0	44.0 %	9-53				
				BS	ng/L	100.0	43.3 %	9-53				
				BSD	ng/L	100.0	51.5 %	9-53				
				BSRPD	ng/L	100.0	17.3%	≤30				
trans-Nonachlor		625P	04/11/14:204133CCG	Blank	ng/L	100.0	ND	<5				
trans-ivonacinoi		0251	04/11/14.204155000	LCS	ng/L	100.0	86.1 %	11-98				
				BS	ng/L	100.0	83.1 %	0-116				
				BSD	ng/L	100.0	65.9 %	0-116				
				BSRPD	ng/L	100.0	23.1%	≤61				
		625P	04/14/14:205423SG	CCV	ug/L	100.0	109 %	70-130				
D. 6. 1.1		0251	04/14/14.20342350	,	ug/L	100.0	107 /0	70-130				
Definition	G (¹) · G ¹¹		· · · · · · · · · · · · · · · · · · ·		. 111		., .					
			tion - Analyzed to verify					1				
			ify that the preparation p									
			mple - Prepared to verif									
	affecting analyte r		d with a known amount	of analyte. I	t is prepared i	to verify that	the preparation	on process is	not			
			SD pair - A blank duplic		1 : 41 1		· · · · 1- · · · · · · ·					
			ecting analyte recovery.	ate is spiked	a with a know	in amount of	analyte. It is p	siepared to v	erity that			
			rence (RPD) - The BS re	lative nora	nt difference	is an indicat	ion of provide	n for the re-	naration			
IBSRPD		e reicent Dille	rence (RFD) - The BS R	native perce	an unrerence	is an mulcat	ion of precisio	in for the pre	paration			
	and analysis.	ult was balows	the DQO listed for the a	nalvta								
			the criteria against which		v control data	is compare	đ					
-	. Data Quanty OU	jective - This is	s the efficite against wind	ch the quant			u.					
Explanation				1		1.						
	: LCS above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.											
360	: CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.											
	: Surrogates are qualified on Control Chart Limits, these are CCV limits. See individual sample reports. : Relative Percent Difference (RPD) not within Maximum Allowable Value (MAV). Data was accepted based on the LCS or CCV											
		Difference (RI	D) not within Maximun	n Allowable	value (MAV). Data was	accepted base	a on the LCS	s or CCV			
1	recovery.)		N -4		- 4- I CC	- COM					
436	: ыапк Spike (BS) not within Ac	ceptance Range (AR). I	vata was acc	epted based c	on the LCS of	or CCV recover	ry.				

: CC 1481151 : 8-49

.

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	900.0	04/23/14:205882caa	CCV	cpm	9246	39.2 %	36 - 44	
1			CCB	cpm		0.100	0.14	
	900.0	04/23/14:205883caa	CCV	cpm	9246	39.5 %	36 - 44	
			CCB	cpm		0.1200	0.18	
Gross Alpha	900.0	04/22/14:204487caa	Blank	pCi/L		-0.07	3	
			LCS	pCi/L	180.6	93.6 %	75-125	
			MS	pCi/L	180.6	90.6 %	60-140	
		(SP 1404189-001)	MSD	pCi/L	180.6	101 %	60-140	
	00000	0.4/00/14.4.00550.4	MSRPD	pCi/L	180.6	10.7%	<u>≤</u> 30	
Alpha	903.0	04/22/14:205794caa	CCV	cpm	9248	39.0 %	36 - 44	
	002.0	04/01/14 00 44 60	CCB	cpm		0.0600	0.16	
Total Alpha Radium (226)	903.0	04/21/14:204469mmf	RgBlk LCS	pCi/L pCi/L	22.38	0.07 70.8 %	2 52-107	
			BS	pCi/L pCi/L	22.38	70.8 % 87.3 %	43-111	
			BSD	pCi/L pCi/L	22.38	74.1 %	43-111	
			BSRPD	pCi/L pCi/L	22.38	16.4%	≤35.5	
Beta	Ra - 05	04/26/14:206060emv	CCV	cpm	9659	91.0 %	82 - 100	
beta	Ru 05	04/20/14.200000emv	CCB	cpm	7057	0.4000	0.55	
	Ra - 05	04/26/14:206061emv	CCV	cpm	9659	91.4 %	82 - 101	
	itu oo	0 1/20/11/2000010111	CCB	cpm	,,	0.4200	0.49	
Ra 228	Ra - 05	04/22/14:204537emv	RgBlk	pCi/L		0.06	3	
			LRS	pCi/L	83.82	51.5 %	27-59	
			BS	pCi/L	83.82	99.8 %	75-125	
			BSD	pCi/L	83.82	108 %	75-125	
			BSRPD	pCi/L	83.82	8.2%	≤25	
Definition								
		ation - Analyzed to verif				criteria.		
8		Analyzed to verify the						
		ify that the preparation				tion to the same	ples.	
		ed to correct for any rea				CC 1 .		
		ample - Prepared to veri					e recovery.	
· Matrix Spikes		- Prepared to establish to ble is spiked with a know					on of how the	at cample
MS . Matrix Spikes matrix affects an		ble is spiked with a know	vii amount c	n analyte. The	recoveries		JII OI HOW UI	at sample
· Matrix Spiles I		MSD pair - A random sa	ample duplic	rate is spiked	with a know	n amount of ar	nalvted The	recoveries
		ple matrix affects analy			with a know	in annount of a	larytea. The	recoveries
· Blank Snikes		d with a known amount			to verify that	t the preparation	on process is	not
BS affecting analyte				r reaso		r rranne	r	
· Blank Snike D		SD pair - A blank dupli	cate is spike	d with a know	n amount of	f analyte. It is p	prepared to v	erify that
		ecting analyte recovery.				- 1		-
· MS/MSD Rela		erence (RPD) - The MS		cent differenc	e is an indic	ation of precis	ion for the p	reparation
and analysis.			-				•	-
BSRPD : BS/BSD Relat	ive Percent Diffe	rence (RPD) - The BS r	elative perce	ent difference	is an indicat	ion of precisio	on for the pre	paration
and analysis.								
DQO : Data Quality C	bjective - This is	s the criteria against whi	ch the quali	ty control data	a is compare	d.		

Quality Control - Radio

<u>Corporate Offices & Laboratory</u> 853 Corporation Street Santa Paula, CA 93060 Phone: (805) 392-2000 Env Fax: (805) 525-4172 / Ag Fax: (805) 392-2063			Remarks: Multiple Chains						2 Lab Duplicate	1 4p 1	Samp Location Description	Lab Number: CC 1451151	Compositor Setup Date://		Sampler(s) B, Pfc;ffc	Quote Number:	Project Name: Special Well Testing Purchase Order Number:	Contact Person: Justin Smith	Phone: (805)927-6227 ext 29 Fax: (8		Address: Cambria Community Services Dist.			
		-	in Ast			 				1/7/11/11/11/11/11/11/11	Date Time Sampled Sampled	. 8-49	Time:/	Þ			, œ		(805)927-6226		st.		AGRICULTURAL mists	
Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 Phone: (209) 942-0182 Fax: (209) 942-0423	Gras r	1 Mary	Relinquished						G DW	G DW	Metho Type c Potable	d of S of San e(P)	Non-P	** Potable	omposit SEE RE (NP) A ystem(S	VERS	SE SIE)E** ;W)	Was	te(W)	•	. 80904:04/07/2014		
•		1	Date:		•					16.412 -	Bacti Field	Reason O) S Sest-F	n: Rou pecial(tine(R SPL) mp.						(RPL)			U U	N
<u>Office & Laboratory</u> 563 E. Lindo Chico, CA 95926 Phone: (530) 343-5818 Fax: (530) 343-3807	יוווופ: Keceived by: C הלאפר		ne: Relinquish							7.14 47 IV.57	Field -	= 15 l	Date .	те но		IE!!	•					TEST DESCRIPTION - See	орссан	nin]
<u>Office 8</u> 3442 Err San Luis Phone: (Fax: (80		5	٢							7 -302	Field 7)RP Field E.	c. 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Reverse side for Contain	La	
Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 Phone: (805) 783-2940 Fax: (805) 783-2912	LINE: NECENAR B		Time: Relinquished							0.13 1.1.1	Wet C ORP ,1	hemis KN,I	Field O2 Stry-H2 NO2, No Iductivi	S,SO4 03,F,0	,TDS,T C1,C02,	SS,PC Br,Al)4,pH, k. (Ca	02 I CO3	Diss.,),			verse side for Container, Preservative and Sampling information	boratory Copy	ĈH
Office & Laboratory 9415 W. Goshen Ave Visalia, CA 93291 Phone: (559) 734-943 Fax: (559) 734-8435	A ANA	gen/	led Date:							1,1,1,4,1,1 1	16oz(I 128oz Metals	P)-Na (P), 3	OH + 2 00ml(D s-Fe,M ed by Sa	Zinc A OO), 10 n,Silic								ampling information		CHAIN OF CU
Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 Phone: (559) 734-9473 Fax: (559) 734-8435	ii Musi		e: Time:					•••		1		, Tot	al-Ai,B	a,B,Ca	a,Fe,Mg	, Mn ,I	K,Na,S	Sr,Zr	1				com	Custody

:

Cor 853 Pho Env					Remarks:		-					2	-	Samp Num	Lab N	Com	Samp	Sampter(s)	2	Ouote	Projec	Conta	Phone:		Address:	Client:		
Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 Phone: (805) 392-2000 Env Fax: (805) 525-4172 / Ag Fax: (805) 392-2063					ks: Multiple Chains	-						Lab Duplicate	9p7	Lucation Description	Lab Number: CC 145	tup Date:/	Sampling Fee: Pickup Fee:	terrs b. Phatie	0	r dicinase order rydninger.	Project Name: Special Well Testing	Contact Person: Justin Smith	(805)927-6227 ext 29 Fax:	Cambria, CA 93428		: Cambria CSD-DW		ENVIRONMENTAL CIERCIE
5) 392-2063													4/7/244	Date Sampled S		Time:	ee:				3 0		(805)927-6226	•	ist.			AGRICULTURAL mists
250 Pho Fax													الله المسالحة	Time Sampled	8-49	`								•				RAL
ice & 1 0 Stag ckton, one: (2			Received	\mathcal{B}'	Reling							G	G	Metho				Compo		·	Grab(
Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 Phone: (209) 942-0182 Fax: (209) 942-0423		J.	100/By	6	inished							DW	DW	Туре		_		*SEE							<u>_</u>		004-0	
atory h Roa 215 2-018 0423		1 Eusl		L.	•			 	 					Potabl Bacti				le(NP) System					Wast	te(W))			
2 2		1							 	<u> </u>			1	Bacti Other	Reaso	n: Ro Snecia	utine(ROUT)	Re	epeat	(RPT)	Re	place	(RPI	.) .)			
		C	Date:	4/1/4	Date:				 •				4	TOC 40ml(· · ·	-		
Office 563 E Chico, Phone Fax: (1		F	::	5	Ti				•			•	Sub-I	Sub C 1000r			affeini B 41	= & Suc 4/U	ralo	se () M	re	llei	d	¥		TEST DESCRIPTION	Special
- & Lab Lindo , CA 95 -: (530) -: (530) -: 34		,	Fime: F	N N	Time:				•				Sub-1	Sub 6 1000r	rganic nl(AC	NDN T),	Q 4	15/16	1	(Ň	100		bd	A		ESCRI	cial
Office & Laboratory 563 E. Lindo Chico, CA 95926 Phone: (530) 343-5818 Fax: (530) 343-3807		Cr 2121	Received By:	glusd	Relinquished							×		for all using LOGI	parar volun N: Tie	neters ne froi e Sam	EXCI n nativ ple 2 '	un sam EPT Fie ve samp Lab Di d Subc	eld T ole 1 uplic	'ests : ate" '	and S	ubco	ontrac	:			- See R	
		F	-9	Ą	D		-																				rse side fo	
Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 Phone: (805) 783-2940 Fax: (805) 783-2912,		•	Date:	4-1-114-1	Date:										¥É () D	Me	lled	-	K	,)YiX	he	i s	7			r Containe	Lat
aborator resa Drive Obispo, C/ 05) 783-29 783-2912			Time:	1700	Time:				•					51)[Q'	M.	nt	A	<u> </u>	5	sb	$\left(\right)$	٦ŀ	\mathcal{O}			r Preserva	oratory
x (x, Suite D A 93401 340		. L	Received By	allie	Relinquished							17					6	R	4		2						ative and S	Copy Copy
		- 44	By:	leore	ned				•):(hì	J.	<u>)</u> ()	ĥ	fil	d	X	٤ŋ	na	C		everse side for Container Preservative and Sampling information	AIN C muuu (1 of 3
Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 Phone: (559) 734-9473 Fax: (559) 734-8435	1 1	AN/14 11	Date:		Date:													!			-						formation	CHAIN OF CUSTODY <i>uww.fglinc.com</i> Laboratory Copy (1 of 3)
tory Avenue 1 1-9473 435		125	Time:		Time:		•													•				•				ODY

·

Correct 1853(1958), "L'aboratory 853 E.AribX(1958), Steph/2 / Ag FAX: (805)392-2063 Santa-Raush: Catife00600.0.1573 Phone: (805) 392-2000 Env Fax: (805) 392-2000 Env Fax: (805) 525-4172 / Ag Fax: (805) 392-2063	ate Offic			multiple chernis			2 Lab Duplicate	th. tdb .	Cliene: Cambria CSD-DW Customer Number: 8000049 Address: Address: P.O. Box 65 Cambria. CA 93428 Phone: (805)927-6227 ext 2! Fax: (805)927-6226 Email Address: ismithl@cambriacsd.ord Contact Person: Justin Smith Project Name: Special Well Testing Purchase Order Number: Quote Number: Quote Number: Sampler(s): Sampling Fee: Pickup Fee: Compositor Setup Date: Time: Sampled Location Description Sampled		* ENVIRONNIENTAL AGRICULTURAL
2011031%512304124072 A201025980892928h Road Stocktoro-004-95601%- 1563 Phone: (209) 942-0182 Fax: (209) 942-0423	SR ä.		Received	Phill 9			G 18 P/G		Time	Lab Number:	
Formation 1330 (1330) Fale3/Sood#92807 Calificer CA195826 No. 2670 Phone: (530) 343-5818 Fax: (530) 343-3807	5 E b		Date Time: Received By:	1/1/1/1/1/555 9/2052~			DW	DW	Surface Water (SW) Monitoring Well (MW) Ground Water (GW) Travel Blank (TB) Waste Water (WW) Drinking Water (DW) Soll (S) Sludge (SLG) Solid (SLD) Oil (O) Bact: System (Sys) Source (SRC) Waste (W) Bact: Routine (ROUT) Repeat (RPT) Other (OTH) Replace (RPL) Special (SPL) Leaf Tissue (LT) Petiole Tissue (PET) Produce (PRD) Preservative: (1) NaOH + ZnAc, (2) NaOH, (3) HCI (4) H2SO4, (5) HNO3, (6) Na2S203, (7) Other Hexavalent Chromium Freed fithered	TEST DESCRI	www.fglinc.com
ระก bra : 2013 ร. รับชี่ช่าสีเป็ญ TEL 9015 ร. รับชี่ชี่สีเรื่อง FAX: 3653 สอบชี่ชี สอบชี่ชี่ชี่อ CA ธริยา ในปริเชิมชี่ชี่มีชื่อมีชาญ. CA ธริยา Phone: (805) 783-2940 Fax: (805) 783-2912		.//.	Date: J. Tilme: Received By:	Date: 11me:	- ×		X X X X X X	× × × ×	Cyanide Total Residual Chlorine EPA 625 EPA 625 Pest EPA 608 Chlordane,Toxaphene & PCBs Gross alpha (Uranium if needed) Radium 226 and 228	RIPTION AND ANALYSES REQUESTED	CHAIN OF C www.fgth CHAIN OF CUSTODY AND ANALYSIS REQUEST DOCUMENT
Fax: (359) 734-9473 FAX: (359) 734 649 Shen Avenue CA ELAnsatian 400 820 94810 Phone: (559) 734-9473 Fax: (559) 734-8435	Office & Laboratory 9415 W. Goshen Avenue	1/0/	Date: Time:							ESTED	HAIN OF CUSTODY www.fgtinc.com CUSTODY EST DOCUMENT

•

Subcontract to Weck Laboratories, Inc.

											· ·			 					Map Ref.
Addre Phone Conta Projec	ct Person: t Name: CC 1481151 - (8-4	(805)525-62	64	Composite(C) Grab(G)	SE SIDE**	Ag Water(AgW)	Source(SR) Waste(W)	at(RPT) Replace(RPL)						;AN(ELI)		
Сотр	Purchase Order Number: Sampler(s) B. Pfeifle Compositor Setup Date:/ Time:/. Lab Number:				Type of Sample **SEE REVERSE SIDE**	Non-Potable(NP)	ype: Other(O) System(SYS) Source(SR)	Bacii Reason: Routine(ROUT) Repeat(RPT) Replace(RPL) Other(O) Special(SPL)	Sub Contracted-Caffeine & Sucralose 1000ml(AGT)	Sub Organic-NDMA 1000ml(AGT)									
Samp Num	Location Description Date T Sampled Sar		Time Sampled	Method of	Type o	Potable(P)	Bacti Type:	Bacti R Other(C	Sub Co 1000ml	Sub Or 1000ml									
1	9P7	04/07/14	11:59	G	DW		\square		1	1	Γ								
							1												
				T										 1					
				1															
				1	<u> </u>						\top			 					
										FA	1-								
						<i>[</i> ,7	N A	Mr.	FII	FU				 1				 	
			<u> </u>	1-		<u> </u>	1 2	1813	<u> </u>	<u>a Canar</u>				 <u> </u>				 	
<u> </u>				+				+										 	
				+							-			 	i			 	
Remarks:					inquish	ed	<u> </u>	<u> </u>	Date:	<u> </u>	ime:		nquished	 Date:	ITin		Relinquished	 Date:	Time:
				Rec	eived I	By:			Date:	Т	ime:	Reco	eived By:	Date:	Tim	ne: F	Received By:	Date:	Time:

•

٠

е

Sai	Inter-Laboratory Condition Upo	on Receipt (Atta CH VI	ich to (COC)	CC148115
1.	Number of ice chests/packages received:		g #	OTC	
2. show	Were samples received in a chilled condition? Te Surface water SWTR bact samples: A sample that has a ten ald be flagged unless the time since sample collection has been	nperature upon receipt	_/ of >10° (/, whethe	/ r iced or not,
	Do the number of bottles received agree with the Were samples received intact? (i.e. no broken bot VOAs checked for Headspace? Were sample custody seals intact? If required, was sample split for pH analysis? Were all analyses within holding times at time of Verify sample date, time sampler n and date the COC, place in a ziplock and put in th nple Receipt Review completed by (initials):	tles, leaks etc.) receipt?	Yes Yes Yes Yes the sam	No (No (No (No (No	N/A MA N/A
San 1. 2.	nple Receipt at SP: Were samples received in a chilled condition? Te Acceptable is above freezing to 6° C. If many packages are r Shipping tracking numbers:		/ c for tests/I	/ I.T.'s/rush	/ nes/
3. 4. 5. Sigi	Do the number of bottles received agree with the Were samples received intact? (i.e. no broken bot Were sample custody seals intact? n and date the COC, obtain LIMS sample numbers,	tles, leaks etc.)	Ves Ves Ses s and pr	No No	N/A N/A ls.
1. 2. 3. 4. 5. Atta	nple Verification, Labeling and Distribution: Were all requested analyses understood and accep Did bottle labels correspond with the client's ID's Were all bottles requiring sample preservation pro VOAs checked for Headspace? Have rush or project due dates been checked and a such labels to the containers and include a copy of the uple Receipt, Login and Verification completed by (e? operly preserved? accepted? e COC for lab delive	Yes Yes Yes	No No No No No	N/A FGL N/A N/A
	repancy Documentation: items above which are "No," or do not meet specifi Person Contacted: Jupper Kestur Initiated By: West Outwinks us Problem: 195 ml Dothe Jubeleel Resolution: Process Of Illi minathen	Phone Num Date: 4	1ber: <u>8</u> 4 8 14	<u>5 603</u> —	ed. - 2171
2.	Person Contacted: Initiated By: Problem: Resolution:	Phone Num		9) CSD-DW	
(Plea conta	use use the back of this sheet for additional commenter acts)	IV-04	/08/20	14-12:0	02:28

Appendix E Groundwater Modeling Report

This page intentionally left blank

Cambria, California May 2014

The information contained in the document titled "Cambria Emergency Water Supply Project San Simeon Creek Basin Groundwater Modeling Report" dated May 2014 has received appropriate technical review and approval. The conclusions and recommendations presented represent professional judgments and are based upon findings from the investigations and sampling identified in the report and the interpretation of such data based on our experience and background. This acknowledgement is made in lieu of all warranties, either expressed or implied. The activities outlined in this report were performed under the supervision of a California Registered Professional Engineer.

Prepared by:

mahael J. Smith

Michael Smith, P.G. Technical Director

Reviewed and Approved by:

aur

Sava Nedic, PE, PMP, BCEE Project Manager

Sava Nedic, PE, PMP, BCEE Project Manager

Contributing Authors

Technical Advisors QA/QC Review

Robert Fitzgerald Gus Yates, Todd Groundwater Graphics and Production

Wendy Coyne Juan Ramirez Kimberly Scheller

Mike Smith Mike Hoffman Mark McCluskey Sava Nedic Whitney Treadway

Table of Contents

Section 1	Introduction	
1.1	General Setting	
1.2	Study Objectives	
Section 2	Conceptual Model	
2.1	Aquifer System Framework	
2.2	Groundwater Occurance and Flow	
2.3	Hydraulic Properties	
2.4	Boundary Conditions	
	1 Recharge	
	2.4.1.1 Recharge from Precipitation	
	2.4.1.2 Recharge from Irrigation Return Flows	
	2.4.1.3 Lateral Boundary Inflow	
	2.4.1.4 Stream Channel Seepage	
	2.4.1.5 Waste Water Percolation Pond Recharge	
2.4.2	2 Discharge	
	2.4.2.1 Municipal Pumping	
	2.4.2.2 Agricultural Pumping	
	2.4.2.3 Evapotranspiration from Groundwater	
	2.4.2.4 Discharge to Surface Water	
2.5	Water Budget	
Section 3	Computer Model Code Selection	
Section 4	Ground-Water Flow Model Construction	
Section 4 4.1	Model Grid	4-1
		4-1
4.1 4.2 4.3	Model Grid Hydraulic Parameters Boundary Conditions	
4.1 4.2 4.3 4.3.1	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package	
4.1 4.2 4.3 4.3.1 4.3.2	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package	
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package	
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.4 4.3.4	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package	
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package Stream Flow Routing Package Lake (Fresh Water Lagoon) Package Constant Head Package Well Package Transport Packages	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-4
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.4 4.3.4	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-4
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package Stream Flow Routing Package Lake (Fresh Water Lagoon) Package Constant Head Package Well Package Transport Packages	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-4 4-4
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.4 4.5	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package Stream Flow Routing Package Lake (Fresh Water Lagoon) Package Constant Head Package Well Package Fransport Packages Selection of Calibration Targets	4-1 4-1 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.4 4.3.4 4.3.5 4.4 4.5 Section 5	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package Transport Packages Selection of Calibration Targets	4-1 4-1 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.2 4.3.2 4.3.5 4.4 4.5 Section 5 5.1	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package Transport Packages Selection of Calibration Targets Model Calibration	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.5 4.4 4.5 Section 5 5.1 5.2	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package Transport Packages Selection of Calibration Targets Calibration Model Calibration Calibration results	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1 5-1 5-2
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.4 4.5 Section 5 5.1 5.2 5.3	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package 5 Well Package Transport Packages Selection of Calibration Targets Calibration Model Calibration Calibration results Water Budget	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1 5-1 5-2 5-3
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.5 4.4 4.5 Section 5 5.1 5.2 5.3 5.4	Model Grid Hydraulic Parameters Boundary Conditions Recharge Package Stream Flow Routing Package Lake (Fresh Water Lagoon) Package Lake (Fresh Water Lagoon) Package Constant Head Package Well Package Fransport Packages Selection of Calibration Targets Calibration Calibration Calibration results Water Budget Sensitivity Analysis	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1 5-1 5-1 5-2 5-3 5-3 5-3
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.2 4.3.4 4.3.5 4.4 4.5 Section 5 5.1 5.2 5.3 5.4 5.5	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package 5 Well Package 6 Constant Head Package 7 Transport Packages 8 Selection of Calibration Targets Model Calibration Calibration results Water Budget Sensitivity Analysis Model Uncertainties and Limitations	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1 5-1 5-2 5-3 5-3 5-3 6-1
4.1 4.2 4.3 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.3.2 4.4 4.5 Section 5 5.1 5.2 5.3 5.4 5.5 Section 6	Model Grid Hydraulic Parameters Boundary Conditions 1 Recharge Package 2 Stream Flow Routing Package 3 Lake (Fresh Water Lagoon) Package 4 Constant Head Package 5 Well Package 5 Well Package 5 Selection of Calibration Targets Calibration Model Calibration Calibration results Water Budget Sensitivity Analysis Model Uncertainties and Limitations	4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4 5-1 5-1 5-1 5-1 5-2 5-3 5-3 5-3 5-3 6-1 6-1 6-2

Section 7	References	7-1
6.7	Conclusions	6-6
6.5	Emergency Alternative Recommendation	6-6
6.4	Emergency Alternative 4 (Indirect Potable Reuse)	6-3

List of Figures

Figure 1-1	Location of Study Area with Significant Site Features	1-3
Figure 2-1	Location of Wells and Borings with Lithologic Data	2-7
Figure 2-2	Geologic Longintudinal-Section of San Simeon Valley Alluvium	2-9
Figure 2-3	Geologic Map of the San Simeon Creek Area	2-11
Figure 2-4	Interpreted Bedrock Surface Elevation Below the San Simeon Basin Alluvial A	quifer 2-13
Figure 2-5	Generalized Water Table-Winter 1989	2-15
Figure 2-6	Location of Aquifer Tests	2-17
Figure 2-7	Hydraulic Conductivity Statistical Distribution	2-19
Figure 2-8	Precipitation and Cumulative Departure from the Long Term Average at San I	Luis
	Obispo-Poly Station	2-21
Figure 2-9	Streamflow in San Simeon Creek and Groundwater Level Hydrographs in the	2001-2002
	Period	2-23
Figure 2-10	Percolation Pond Discharge 2009-2013	2-25
Figure 2-11	San Simeon Basin Well Field Pumping 2009-2013	2-27
Figure 2-12	Location of Surface Water-February 2012	2-29
Figure 4-1	Model Grid	4-7
Figure 4-2	Detail Area Showing Model Grid	
Figure 4-3	Upper Zone Hydraulic Conductivity Distribution	
Figure 4-4	Middle Zone Hydraulic Conductivity Distribution	
Figure 4-5	Deep Zone Hydraulic Conductivity Distribution	
Figure 4-6	Location of Wastewater Percolation ponds	
Figure 4-7	San Simeon Creek, 9K2 and 9L1 Hydrographs	
Figure 4-8	Location of Stream and Lake Boundary conditions	
Figure 4-9	Location of Constant Head Boundary Conditions	
Figure 4-10	Location of Pumping Wells	
Figure 4-11	Location of Wells with Water Level Measurements	
Figure 5-1	Specific Yield Sensitivity Analysis	5-5
Figure 5-2	Comparison of Modeled and Field Measured Water Levels During the 2001-20	002
	Calibration Period	5-7
Figure 5-3	Histogram of Model Residuals	5-9
Figure 5-4	Observed and Modeled Hydrographs at Well 10A1	5-11
Figure 5-5	Observed and Modeled Hydrographs at Well 10F2	5-13
Figure 5-6	Observed and Modeled Hydrographs at Well 10G1	5-15
Figure 5-7	Observed and Modeled Hydrographs at Well 10G2	5-17
Figure 5-8	Observed and Modeled Hydrographs at Well 10M2	5-19
Figure 5-9	Observed and Modeled Hydrographs at Well 9J3	5-21
Figure 5-10	Observed and Modeled Hydrographs at Well 9K1	5-23
Figure 5-11	Observed and Modeled Hydrographs at Well 9K2	5-25
Figure 5-12	Observed and Modeled Hydrographs at Well 9L1	5-27
Figure 5-13	Observed and Modeled Hydrographs at Well SS4	5-29

Figure 5-14	Observed and Modeled Hydrographs at Well 9P2	
Figure 5-15	Observed and Modeled Hydrographs at Well 16D1	5-33
Figure 6-1	Emergency Alternative 1 Summary	6-7
Figure 6-2	Simulated Extent of Treated Wastewater After 270 Days of Operation	6-9
Figure 6-3	Emergency Alternative 2 Summary	
Figure 6-4	Emergency Alternative 3 Summary	
Figure 6-5	Emergency Alternative 4 Summary	6-15
Figure 6-6	Simulated Tracer Extent at 30 Days-Emergency Alternative	6-17
Figure 6-7	Simulated Tracer Extent at 60 Days-Emergency Alternative	6-19
Figure 6-8	Simulated Tracer Extent at 90 Days-Emergency Alternative	
Figure 6-9	Simulated Tracer Extent at 120 Days-Emergency Alternative	6-23
Figure 6-10	Simulated Tracer Extent at 150 Days-Emergency Alternative	6-25
Figure 6-11	Simulated Tracer Extent at 180 Days-Emergency Alternative	6-27
Figure 6-12	Simulated Tracer Extent at 210 Days-Emergency Alternative	6-29
Figure 6-13	Simulated Water Levels After One Year of Operations	6-31
Figure 6-14	Simulated Tracer Breakthrough at Wells SS1 and SS2	6-33
Figure 6-15	Simulated Shallow Water Table Adjacent to Fresh Water Lagoon	6-35
Figure 6-16	Simulated Basin Storage Depletion and Ocean Inflows and Outflows	
Figure 6-17	TDS profile from Well Samples Simulated TDS at Brackish Extraction Well	6-39
Figure 6-18	Simulated TDS at Brackish Extraction Well	6-41

List of Tables

Table 2-1	Alluvial Aquifer Annual Water Budget Estimates from 1988 USGS Study2-6
Table 5-1	Summary of Water Budget Components for 2001-2002 Calibration Period5-2

This page intentionally left blank.

Acronyms/Abbreviations

AF	acre-feet
CCSD	Cambria Community Services District
MGD	million gallons per day
MSL	mean sea level
NAVD 1988	North American Vertical Datum
NOAA	National Oceanic and Atmospheric Administration
TDS	total dissolved solids
USGS	Unites States Geological Survey
VDF	Variable-Density Flow Process
WRIR	Water Resources investigation Report

This page intentionally left blank.

Section 1 Introduction

1.1 General Setting

This investigation is being conducted for the Cambria Community Services District (CCSD), which provides water, and collects and treats wastewater for the town of Cambria and adjacent service areas. The area of specific interest in this investigation is the lower portion of the San Simeon Creek valley, extending about 3.5 miles upstream from the Pacific Ocean. The study area and major features are shown on **Figure 1-1**.

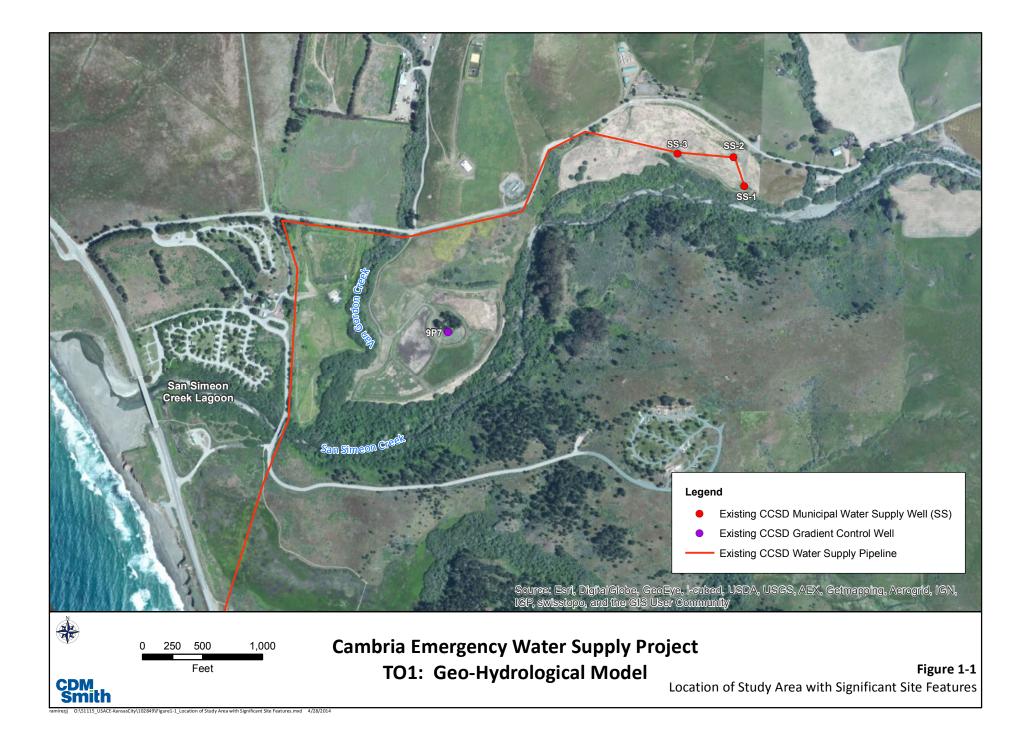
The study area includes areas underlain by a significant alluvial aquifer along San Simeon Creek, including the Van Gordon Creek tributary. Near the headwaters, the creek valley forms a steep, narrow canyon. Along the final three to five miles before reaching the ocean, the valley widens to a floodplain that is up to approximately one thousand feet wide. The floodplain is underlain by the groundwater basin and is flanked by steep hillsides that rise 200 to 800 feet above the valley floor. A fresh water lagoon is present in the lower portion of the valley that serves as an important ecological resource. This lagoon forms behind an ocean beach berm and is supported by groundwater discharge and surface water inflows.

CCSD and agricultural water users along San Simeon Creek use wells in the alluvial aquifer. Groundwater occurs in the alluvial deposits beneath the creek, which drains the western flanks of the Santa Lucia Range in San Luis Obispo County and discharges into the Pacific Ocean. The alluvial deposits form flat valley floors, which are used for irrigated agriculture. The alluvial aquifer is recharged primarily by seepage from San Simeon Creek, which typically flows during the winter and spring rainy season.

The CCSD has a well field consisting of four potable water supply wells located approximately one mile inland from the ocean. They also utilize a series of percolation ponds between the well field and the ocean where secondary treated waste water is recharged back to the aquifer. Pumping during the dry season results in seasonal declines in groundwater levels since production is supported by removal of water from storage in the aquifer when the stream is not flowing.

Numerous private wells are present that irrigate farmlands on flat areas adjacent to the creek bottoms. Native vegetation consists of trees, grass, and shrubs that grow along the creeks and field borders. Grassy hillsides along the sides of the valleys are used for grazing. San Simeon State Park occupies the western extent of the basin and includes a large campground, which obtains its water supply from the CCSD.

1.2 Study Objectives


Extended drought conditions in the central coastal area of California have persisted over the past year, which have resulted in a limited water supply for the CCSD well field. Studies have been ongoing to identify additional water sources for the CCSD including indirect potable reuse of the percolated secondary effluent. However, the persistent drought conditions have elevated concern on availability of a reliable water supply since water levels continue to decline as aquifer storage is depleted. This groundwater modeling study has been developed to support evaluation of the basin water management alternatives to develop additional water supplies for CCSD to meet the emergency

conditions. The specific objectives of this San Simeon Basin Groundwater Modeling study are provided below.

- Develop a groundwater model that is consistent with data from the United States Geological Survey (USGS) WRIR 98-4061 model (Yates and Van Konyenburg, 1998) and the 2007 modeling analysis (Yates, 2007) to allow assessment of potential emergency water supply alternatives focusing on recovery of brackish basin water near the current percolation ponds.
- 2. The evaluation will consider the impacts of vertical flow and density driven flow in the evaluation of alternatives.
- 3. The evaluation will assess residence times prior to recovery of treated wastewater effluent as part of the alternatives evaluation.
- 4. The model will evaluate impacts of emergency water supply alternatives on San Simeon Creek, and the fresh water lagoon area.

The evaluation will be based on available existing data, as supplemented by stream elevation survey and select water quality data that are currently being collected.

This page intentionally left blank.

Section 2 Conceptual Model

The basin conceptual model documents the current understanding of the aquifer system at the site and includes the data that are available to support this interpretation. This site conceptual model is based on the 1998 USGS report (Yates and Van Konynenburg, 1998), supplemented by additional data that have been collected since the late 1980s. This conceptual model is used to support development of the groundwater model that will be used for assessment of emergency water supply alternatives. Subsequent sections describe the nature and extent of the aquifer system, sources of recharge and discharge, current aquifer use and a water budget.

2.1 Aquifer System Framework

The aquifer system framework describes the physical configuration of the alluvial aquifer, including its areal extent, thickness and the lithology of the aquifer materials. The alluvial aquifer in the San Simeon valley consists of sands and gravels with interbedded finer grain lithologies filling the bedrock valley of San Simeon Creek and the lower portion of Van Gordon Creek. This alluvial aquifer extends to approximately elevation -120 feet or deeper in its western extent, and likely extends to the off-shore area, since the extent of the bedrock valley was influenced by lower sea level elevations in the geologic past.

Figure 2-1 shows the location of wells and borings for which geologic information is available, with the path of the cross-section provided on **Figure 2-2**, which show information based on boring logs, with generalized interpretation of lithology between the boring locations. The alluvium west of the confluence with Van Gordon Creek contains a larger percentage of fine grain material interbedded with more permeable zones and may act as a confining to semi-confining unit for the deeper zones.

Figure 2-3 provides a geologic map produced by the US Geological Survey (Hall, et. al., 1979). This map shows the extent of alluvial deposits in the San Simeon valley and adjacent areas, along with the bedrock geology. Several faults have been mapped or inferred in the bedrock units, however, the USGS concluded that they do not impact the alluvial deposits, so they are not expected to impact the hydrogeology of the alluvial aquifer (Yates and Van Konynenburg, 1998).

The Hosgri fault zone is located sub-parallel to the coastline is this area and is about two miles off-shore. This zone was identified as seismically active (Yates and Van Konynenburg, 1998). However, due to its distance from the San Simeon valley alluvial aquifer, it is not anticipated to impact the hydrology of the basin.

Bedrock units consist of highly fractured Franciscan rocks that are hydraulically connected to the alluvial basin, however, their permeability is much lower than the alluvial aquifer and the bedrock has a limited role in the hydrology of the basin, providing a limited amount of recharge to the alluvium that is described in a later section.

Figure 2-4 shows the elevation of the bedrock surface that was interpreted from borings in the basin in the 1998 USGS report (Yates and Van Konynenburg, 1998). This bedrock surface forms the lower boundary of the alluvial groundwater system.

2.2 Groundwater Occurance and Flow

The alluvium in the San Simeon basin is saturated, with groundwater near the ground surface at its western extent. During the periods when water is present in San Simeon Creek, groundwater levels are similar to those observed in the creek. The depth to groundwater increases away from the creek, since in many areas of the valley the creek is incised below the adjacent terrace areas.

Groundwater levels decline during the dry periods of the year and in response to pumping. Water levels are mounded in the vicinity of the percolation ponds that are operated by the CCSD. A generalized water table configuration for the winter of 1989 is provided on **Figure 2-5**, showing the down valley flow direction.

The average hydraulic gradient down the valley is about 0.006 ft/ft, with increased gradients in areas where the width of the bedrock valley narrows (Yates and Van Konynenburg, 1998). Water level elevations monitored at wells range from about 52 feet (NAVD 1988) to slightly above sea level at the western extent. Vertical head differences can be observed at two locations, near the shoreline at well 8R3, and at adjacent shallow and deep piezometers at 9N2 and 9N3.

The 8R3 well has one interval screened in bedrock at depth of 130 to 140 feet, and a shallower zone screened in the deep portion of the alluvial aquifer from 92 to 102 feet. Water levels in the two intervals at 8R3 were very similar and do not suggest the presence of a significant gradient between the fractured bedrock and the alluvial aquifer.

Water levels at the 9N2/9N3 location showed a significant downward gradient present, with the shallow well showing an elevation of 18.37 feet, while the deep well had a water level elevation of 8.29 feet (NAVD 1988). The water table elevation at the shallow well is considerably higher than other wells, suggesting that this is a perched interval that is affected by the nearby percolation pond or Van Gordon Creek and not representative of the principal aquifer system. This is consistent with the inter-bedded lithology logged in the adjacent well in the upper 20 feet, where well 9N3 is screened.

A fresh water lagoon is present at the western extent of the valley that appears to be in hydraulic communication with groundwater, since it has water present through most years and has a water level similar to the adjacent well 8R3.

2.3 Hydraulic Properties

Hydraulic characteristics of interest include the hydraulic conductivity, storage coefficient, specific yield and effective porosity. Limited characterization has been conducted in past studies, primarily quantifying hydraulic conductivity using pumping tests at seven wells located along the length of the valley. **Figure 2-6** shows the location of aquifer tests and the hydraulic conductivity that was reported in the 1998 USGS report (Yates and Van Konynenburg, 1998).

Responses of water levels in wells to stream stage changes were also used to estimate hydraulic properties, however, these estimates yield a composite of storage coefficient and transmissivity, so it is difficult to estimate hydraulic conductivity due to the highly variable storage coefficient, which could range from the specific yield to a confined or semi-confined range.

The results of the stream interaction estimates did indicate that the aquifer is highly permeable. The horizontal hydraulic conductivity estimated from pumping tests ranged from 99 to 413 ft/day. The geometric mean of the hydraulic conductivity is 220 ft/day. **Figure 2-7** shows the statistical distribution of hydraulic conductivity values.

The reported storage coefficients in the USGS Study were low compared to typical estimates for an unconfined sand and gravel aquifer. This is likely due to the short term nature of the aquifer tests, use of the pumping well response for analysis and the presence of finer grain interbeds, which would lead to a confined to semi-confined response rather than physical drainage of pore space in the aquifer. Based on the lithology of the aquifer, an estimate of 0.1 to 0.2 is estimated for the specific yield and the effective porosity of the aquifer at the site, based on typical values estimated for this type of aquifer.

Estimating the effective porosity from the specific yield is a conservative approach, since the effective porosity is likely to be higher than specific yield, which is the drainable portion of the pore space. Some moisture will be retained under gravity drainage that will contribute to groundwater flow. A lower effective porosity will result in a higher groundwater velocity, which is conservative for this analysis.

2.4 Boundary Conditions

Boundary conditions describe sources of water inflow and outflow to the basin, and include recharge, subsurface inflow from surrounding bedrock areas, pumping, stream inflows, outflows and seepage, evapotranspiration from groundwater, interaction with the ocean and percolation from wastewater treatment plant effluent disposal ponds. This section describes each of these elements, while the following section presents estimates of each of the water budget components.

2.4.1 Recharge

2.4.1.1 Recharge from Precipitation

Precipitation is estimated using the data from the San Luis Obispo–Poly Station, which was selected for use in the 1998 USGS report (Yates and Van Konynenburg, 1998). Mean annual precipitation for the period 1870–2013 was 21.93 inches. Rainfall increases with distance from the shoreline in this area, estimates increasing to 40 to 50 inches in headwater areas east of the basin of interest.

Figure 2-8 shows the long term precipitation trend near the site, indicating that precipitation has been significantly lower than the long term average for the last decade. The majority of the annual rainfall occurs between November and April. Deep percolation of precipitation past the root zone will recharge the aquifer and only occurs during significant precipitation events when soil moisture is above field capacity and available moisture exceeds evapotranspiration demands.

Most recharge from precipitation occurs in irrigated areas, since the native vegetation areas only meet these conditions during periods of average or greater precipitation. Evaluations during the USGS study period for the 1998 report, using data from 1988 and 1989, indicated no significant recharge occurred in the native vegetation areas (Yates and Van Konynenburg, 1998). This report estimated that the quantity of recharge under average conditions originating from precipitation within the basin at 50 acre-feet (AF)/year, which corresponds to 0.75 inches of recharge, or 3.4 percent of the precipitation.

2.4.1.2 Recharge from Irrigation Return Flows

Irrigated agriculture is practiced within a significant portion of the basin. The 1998 USGS report estimated that 37 percent of the applied water returned to the groundwater system as deep percolation, which is reasonable for the flood irrigation practices in the late 1980s. Since that period, irrigation practices have changed and more efficient sprinkler and drip systems are now used. A return flow percentage of 15 percent of the applied water for current irrigation practices is estimated, based on professional judgment.

2.4.1.3 Lateral Boundary Inflow

An additional source of water entering the system originates as discharge from surrounding fractured bedrock. This term is difficult to determine from field measurements, but was estimated in the 1998 USGS report at 150 AF/year (Yates and Van Konynenburg, 1998). This term was estimated from the contributing tributary areas of bedrock adjacent to the study area and modified downward based on the calibration conducted by the USGS.

2.4.1.4 Stream Channel Seepage

The most significant source of recharge to the aquifer system is seepage from the San Simeon Creek channel during runoff periods. Water levels in the basin recover rapidly with the onset of stream flow in the fall and winter and decline when stream flow ceases in the spring. Stream flows during the 2009 to 2013 time period are shown on **Figure 2-9**. The quantity of recharge from the stream is a function of the period of time that the stream is flowing and the amount of pumping that is occurring in the aquifer.

2.4.1.5 Waste Water Percolation Pond Recharge

Much of the water that is produced by the CCSD is returned after receiving secondary treatment to the lower part of the basin by discharging to a series of four percolation ponds. The quantity of water discharged to the percolation ponds during the period 2009–2013 is shown on **Figure 2-10**. This water infiltrates to the alluvial aquifer except for a small percentage that is lost to evaporation. The average discharge during the 2009 to 2013 period was 0.56 million gallons per day (MGD).

2.4.2 Discharge

2.4.2.1 Municipal Pumping

The CCSD maintains a potable water supply well field in the San Simeon basin that provides a significant portion of the water to the Cambria community. Additional water for the CCSD system is obtained from the Santa Rosa basin. In addition to the water supply pumping, a gradient control well is periodically pumped as needed to maintain an adequate westerly gradient from the CCSD well field toward the percolation ponds to avoid inducing flow of treated wastewater back toward the well field. **Figure 2-11** shows the average monthly pumping rates from the CCSD well field during 2009–2013. The average production rate from the San Simeon well field over this period was 0.51 MGD.

2.4.2.2 Agricultural Pumping

The alluvial aquifer is used for irrigation within the valley. The agricultural pumping during the late 1980s was estimated in the USGS report at 450 AF/year (Yates and Van Konynenburg, 1998). During an update to this analysis in 2007, this production was estimated at 180 AF/year, based on changes in irrigation practices and interviews with water users. (Yates, 2007)

2.4.2.3 Evapotranspiration from Groundwater

Limited evapotranspiration from groundwater occurs in areas where groundwater levels are near the surface in riparian areas near the channel of San Simeon Creek. This term was estimated at 30 AF/year in the USGS report (Yates and Van Konynenburg, 1998).

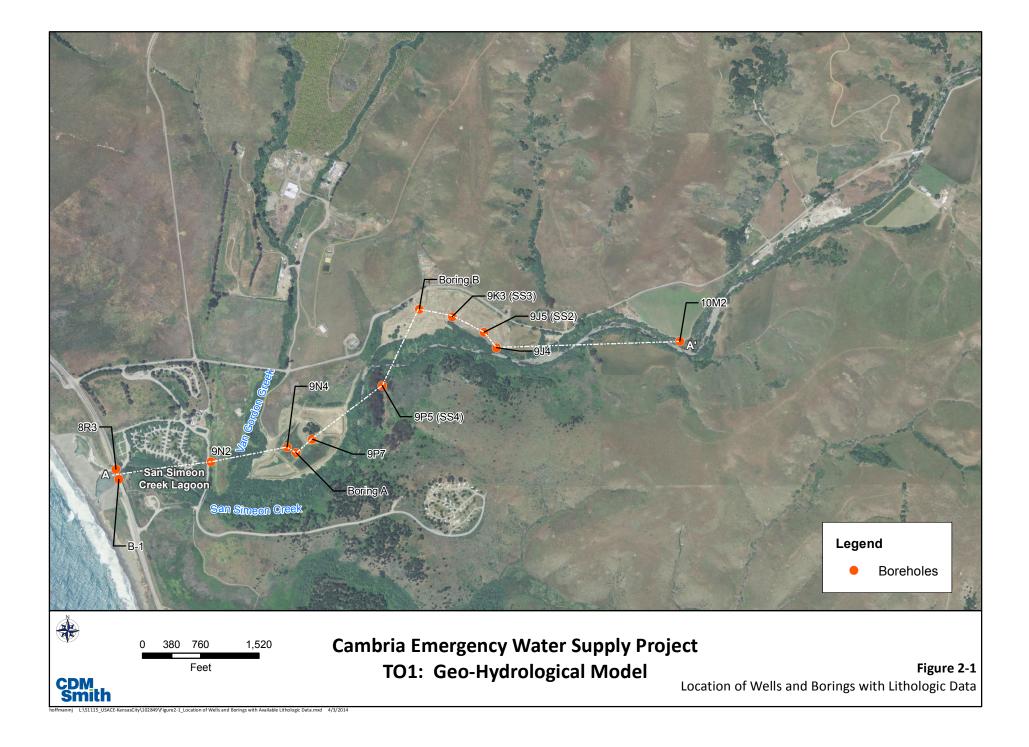
2.4.2.4 Discharge to Surface Water

Water in the aquifer will discharge to the surface water system during periods when the groundwater levels are higher than adjacent stream levels. This occurs primarily in the lower extent of the basin extending from the location of the percolation ponds to the ocean. **Figure 2-12** shows the locations where water was present in the San Simeon Creek channel during February 2014, indicating that groundwater discharge was occurring in these reaches. Elevations of the water surface (NAVD 1988) are shown on the figure.

These observations were made during a period when there had been no precipitation for multiple months. In addition, there is significant subsurface outflow to the ocean that occurs from the basin. This quantity was estimated by the USGS at 320 AF/year by calibration of their model (Yates and Van Konynenburg, 1998). Mean sea level in this area is 2.82 feet referenced to the NAVD 1988 datum used in this report. Mean seawater level was interpolated between the primary NOAA tidal stations at Port San Luis and Monterey (Yates, 2014 personal communication).

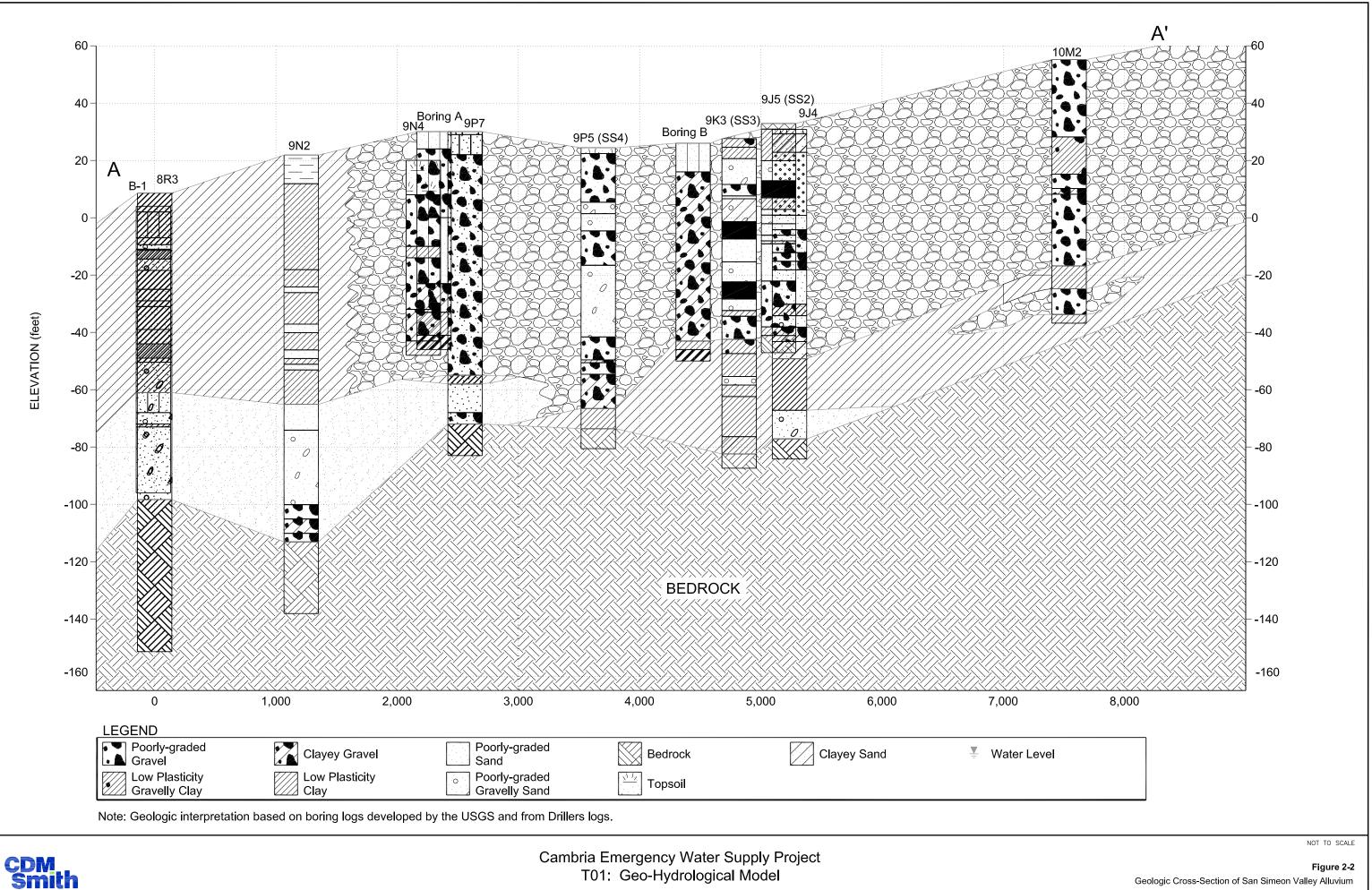
2.5 Water Budget

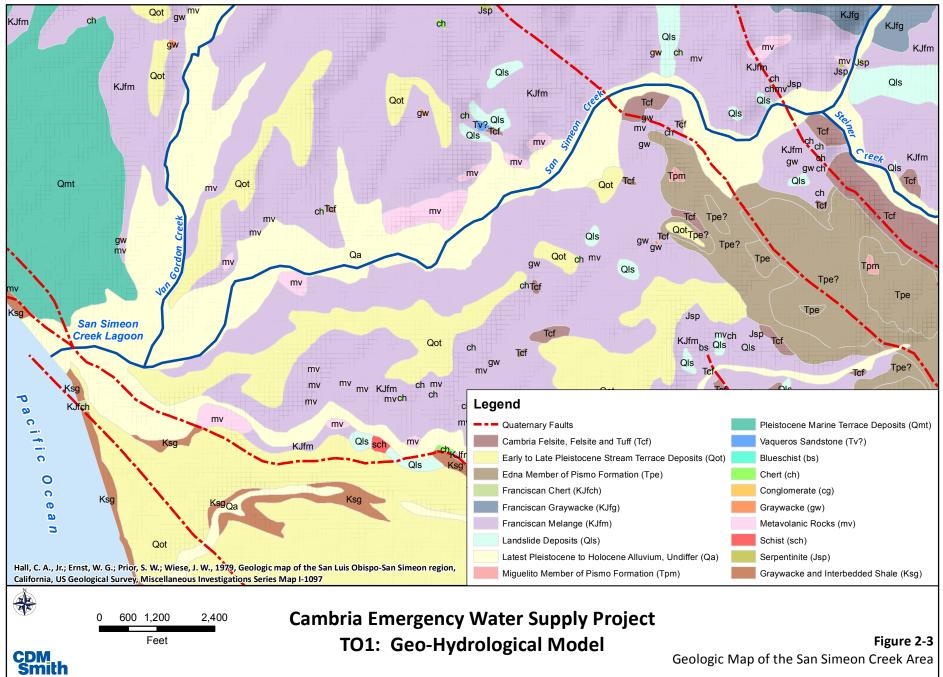
A basin water budget summarizes the components of inflow and outflow to the aquifer at the project site. The water budget from the 1998 WRIR report is summarized on **Table 2-1** and represents averages for the late 1980s period that was used in the USGS analysis.


Current practices have decreased agricultural pumping and return flows, and the CCSD now uses percolation ponds rather than the spray irrigation that was used in the late 1980s. The net inflows and outflows were balanced using estimates of the uncertain terms, primarily ocean outflow, resulting in an overall net inflow to the basin of 1760 AF/year with an equivalent outflow of the same quantity. The USGS estimates of areal recharge and lateral boundary inflow were retained for the current study, the remaining components were based on updates from the 2007 study (Yates, 2007), and flow records maintained by the CCSD. Components that cannot be measured with available field data, such as the ocean outflow and stream gains and losses were calculated in the model.

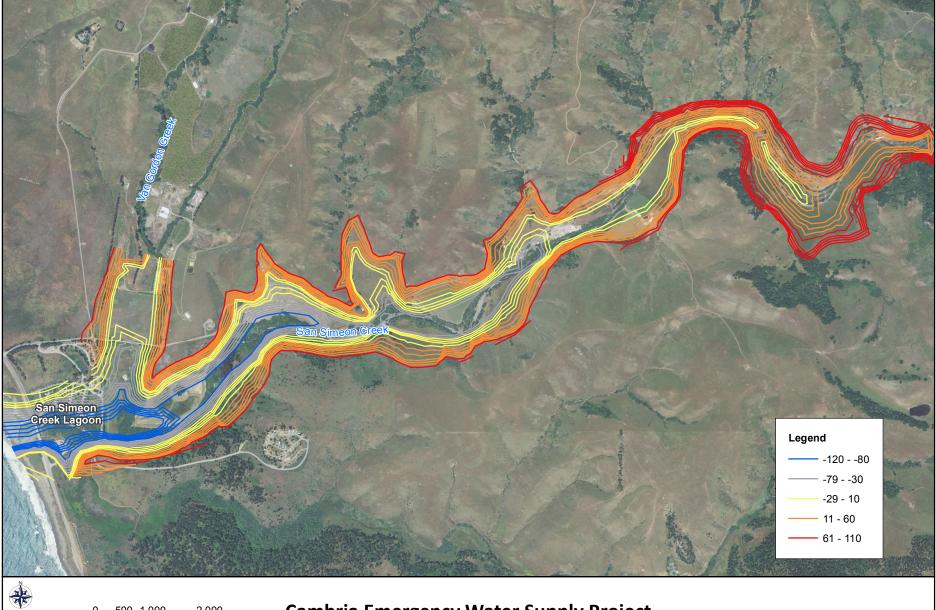
Budget Item	Inflow (AF)	Outflow (AF)	Net flow (AF)
Rainfall recharge	50		50
Stream Seepage	950	-410	540
Subsurface Inflow and Outflow			
Lateral Boundary Inflow	150		150
Ocean Boundary Outflow		-320	-320
Agricultural Water Use			
Pumping		-450	-450
Irrigation Return Flow	170		170
Nonagricultural Water Use			
CCSD Pumping		-550	-550
Rural Pumping		<-10	<-10
CCSD Percolation	440		440
Septic Tanks	<10		<10
Evapotranspiration		-30	-30
Change in Storage			0
Totals:	1760	-1760	0

Table 2-1 Alluvial Aquifer Annual Water Budget Estimates from 1988 USGS Study


Note: From Yates(1998)



This page intentionally left blank.



nirezjj O:\51115_USACE-KansasCity\102849\Figure2-3_GeologicMapoftheSanSimeonCreek Area.mxd 4/28

This page intentionally left blank.

Cambria Emergency Water Supply Project TO1: Geo-Hydrological Model

500 1,000

Figure 2-4 Interpreted Bedrock Surface Eler

CDM

Feet

2,000

Figure 2-4 Interpreted Bedrock Surface Elevation below the San Simeon Basin Alluvial Aquifer This page intentionally left blank.

